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THE METHOD OF AVERAGING IN DYNAMIC PROBLEMS OF THE THEORY OF THE 
ELASTICITY OF STRUCTURALLY ~NHOMOGENEOUS MEDIA* 

A.V. CHIGAREV 

A modification of the method of averaging to construct approximate 
solutions of the dynamic equations of the theory of the elasticity of an 
inhomogeneous medium as the synthesis of successive approximation with a 
probabilistic approach is considered. To find the zero-th approxination 
we assume the material coefficients of the medium to be random functions 
of the spatial coordinates, one form of which is the elastic moduli and 
the density of this specific medium. In the zero-th approximation the 
inhomogeneous medium under consideration is described by an effective 
medium possessing spatial dispersion. The first approximation takes 
account of the influence of structural singularities of this specific 
realization on the displacement field configuration of the propagating 
waves. Error estimates are given for the zero-th approximation. 

The dynamics of inhomogeneous media is described by equations with 
variable coefficients whose approximate methods of solution have been 
developed intensively. Different modifications of the averaging method 
were examined for example, in /l-5/. The nethod of using the averaging 
method for discretely laminar structures is described in 111. An 
analogous scheme is developed in this paper for the dynamic equations of 
the theory of the elasticity of inhomogeneous media. 

1. The relation between the stress tensor uil and the strain tensor %j in a linear 
inhomogeneous medium is given by the generalized Hooke's law 

oif = hzlkr (5)+&r, ekl = '1~ (%f f ml .k) (1.1) 

where ~trrr 
coordinates 

is the tensor of the elastic coefficients whose components depend on the spatial 
5, (i = 1, 2, 3). 

Harmonic wave propagation is described by the equations 

(kkl (2) uk,t),f + oap b) % = 0 (~4 

Here p(x) is the density of the medium and ZQ is the displacement vector. The boundary 
conditions or the conditions at infinity are deterministic and posed in the ordinary way for 
each specific problem. 

In direct problems &r(x), p(r) are specific functions of sl. We assume that the data 
hjkt &)s p tr) are samples of random fields &jkZ b), P(4 given by their moments. Later, 
we shall denote the random functions and samples of them by identical letters as is customary 

in wave propagation theory and does not result in errors. 
a certain field function 

Multiplication of hrjkl (s), P (5) bY 
f(z) will be considered as the action of the operators hiikl (s), p(s) 

on f(x). We write the symbolic operator representation 

&jkZ = AtkL 4 djktt p = p* $- f3’, Kf = hf - J%*f (1.3) 

where Aijgi*, p* the 
relationships 

are the effective elasticity and density operators introduced by 

<Oil> = <&k&l> = &+k <ekZ>? <out> = P* (us> (1.4) 

The mean fields <O_ij>, <ez3, <ut> 
bY &I, p*. 

are determined for an effective medium characterized 
The representation (1.3) does not result in errors since the operators in all 

the CalcUlations are considered jointly with the functions to which they are applied, 
According to (1.4). we represent (1.2) in the form 
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Substituting (1.5) into (1.2), we obtain 

(a&&~Q, j + PWU~ = - (An;jnug?"),j - p'c&$-rf, 66) 
R = O,P,2,.‘ ** 111-1)=oX uj@'5r(u*> 

We will write (1.6) in direct notation, which we will also use later by changing when 
necessary to a subscript representation 

L*U(n) = L'U("-+), &* = VjA&VI -+ 

L& = Vj&f%lV, + O’p’6ii, 

The solution of (1.7) has the form 

U(n) = _(L*)-‘L’uw-l) = (-_l)nMc”) (a), 

&p = (,*)-l,‘*, (LyL’ 

where L* is an integrodifferential operator and (L*)-1 is the inverse operator to 
Taking (1.8) into account we can write the solution (1.5) in the form 

u(5) = <u(r)) -I- &- VM(") (u(4) 

Using Green's tensor G* (X,X,) of the effective medium, the operator (L’)_’ can be 
represented as follows: 

(L*)-If(z) = l G* (I, ;2;) f (q) 8’zx, L*G* (z, ~1) = 6 (3~ - q) (1.10) 

Taking account of (l-lo), series (1.9) is the scattering series for the problem of the 
scattering of the field (u) by the fluctuations x,p' of an inhomogeneous medium. Here 
the n-th term of the series (1.9) corresponds to taking account of n-tuple scattering of the 
field <u> by inhomogeneity fluctuations. For given functions h(x), p(x) and known A*, p* 
(or G*) the series (1.9) yields the solution of (1.31. 

The method of changing from (1.3) to the integral 

u (r) = <u (5)) - ! G* (5, x,)[(A'e),,, + p'02u1(q)d3rr 

and that obtained from it by differentiation with respect to x 

are equivalent to the one considered. 
To take account of multiple scattering we will change from the variables 

(1.12) to E,y according to the formulas /7/ 

(1.11) 

(1.12) 

e, A' in 

where 
* w* Gin, ,,,j (2, $1) = Gin. mj (2, q) f G% m,6 (I - ~1)(~,,j~t(z) is the tensor of elastic polarizability 

of the medium). 
In the new variables, (I.121 has the form 

We will write the system of integral Eqs.(l.ll) and (1.13) in matrix form. In the usual 
manner we will change to matrices and vectors /8/ 

(11) -f 1, (22) -y 2, (33) -+ 3, (23) = (32) - 4 

(31) = (13) - 5, (12) == (21) + 6, a, p = 1, . . ., 6 

h zjxl = h ai3, Ytjhl E Ya8~ G?,,, = g,,, m = 1, 2, 3 
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where (ii) -+ a, (/cl)+ p. We will introduce the notation /8/ (the superscript T denotes trans- 
position) 

&; = G:n(a = 1 = 1, 2, 3; p = n = 1, 2, 3),&i = G?,_+,, 

(a = m = 1, 2, 3; (in)-+ fi = 4, . . 9), gb"A = G,,,m3 W* 

((in) da, (m])-+ fi; a, @ = 4, . . 9) 

Here 1 is the unit and 0 the zero (6x6) matrix. 
The system (1.11) and (1.12) can be reduced to the form 

%(sc) = <Q(s)) - s rz‘ (2, %j v'@' (%j y(r1) d9r, 0.14) 

Solving this equation by successive iterations, we represent the result in the form of 
the series 

Taking the average of (1.15) we obtain 

It can be confirmed directly that this series is a solution of an equation of Dyson type 
/6, 7/ for an inhomogeneous elastic medium 

The kernel 
0) 

Q(x,, x8) of the mass operator Q is a series in the moments $p) (2) (<y@'(~)> = 

Q (G, 4 = g (%t 4 <Y’~!+I) Y”) (“d> - . . . (1.13) 

The integral Eq.fl.14) is statistically non-linear; consequently, obtaining equations 
for the moments of the field '4 on the basis of this results in an infinite coupled system 
of equations. 

Let us introduce the effective operators A*, p*, X'(p)* by the relationships (1.3) and 

{y'W> = Up)* <Y> 

Taking the average in (l.Mf, we obtain 

<Y (x)> = <a, (5)) -s g (5, rr)l r(p)*<Wl (srj flr1 

Comparing (1.16) and (1.18), we find 

(1.18) 

(1.19) 

We obtain a formula connecting the operators h*,l?: 

from the formulas 

A" zzz A, - I'* (1 - GWr*)- (1.~) 

y = a(r)@, y(P) = J,(P) (a@))-1 

where h, is the effective static elastic modulus, 
Green's tensor j7J. 

and G(") is the singular component of the 
For a Statistically isotropic inhomogeneous medium 
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T*f (4 = l T* (x - xl) f (x1) d%,, T* .= I’*, p*, A* 
r* (x - 4 = -G!:I; (z - xl) <y (4 y (J+)) + . . . 
p* (z - xx) = -G(‘) (I - sz) (p’ (2) p’ (t,)) + ..I 

<rp’ (4 ‘p’ w> = ffcp (I t - Xl If, tp = a: P: Y 
<Y> = 0, <P' (z) h' (XI)> = 0 

(1.21) 

It follows from (1.20) and (1.21) that the effective medium takes account of the spatial 
dispersion. 

The operators f*, P*, A* represent series in the moments Y (I)? P (5) and are written 
in the general case in the form 

n*f (x) = s A* fs - II) f (q) @s,, A* (5 - II) = h,6 (z - 21) + 
Ad (z - .zJ 

L1= j!!(_ l)nW')>, 

$L~.: f 

P*(x,s,) = 5 (- l)"(P% 
n=a 

Here ha are elastic coefficients found from the condition <yj~l(s)) = 0. 
The elastic coefficients h, for two-phase composites and single-phase polycrystalline 

materials satisfy algebraic equations analogous to the equations of the selfconsistent field 
method /7/. It follows from (1.26) that h, are the static local part of the effective 
elastic models. The term i%'(x -Xl) takes account of multiple scattering, damping, and dis- 
persion of the wave velocity in an effective medium. 

2. After the elasticity operator A* and the density operator p* of the effective 
medium have been defined in (1.5), we find the zero-th approximation <u> and higher approxi- 
mations I&(") in the series (1.4) according to (1.6) and (1.7). The eigenfunctions of the 
operators (1.26) are exp (iqr) ; consequently, we represent the zero-th approximation (u> 
in the form 

where the wave numbers qcn’ are roots of the dispersion equation 

I CljAtjrtl (9) (II - P* (q) az6tk I z 0 (2.2) 

In the general case the *'"' are complex 

&JR (o) = &Xi" (W) f i&z(~) (o), a = 1, f (2.3) 

Here &")(ti)= Imq(") characterizes the damping of the n-th branch because of scattering, 
the phase velocity c,&") = 0 (xJ=))-r and group velocity crJ=) = (d~~(")/dw)-' of the n-th 
branch are calculated from the known real part of the wave number Req,(") = ?&("I. 

The distribution of the roots (2.2) and (2.3) in the complex plane q depends on the kind 
of field correlation functions h(r), P (& characterizing the structure of the medium. 

The higher approximations u(")(n = 1, 2,...) are found from (1.6) and (1.7) according to 
(1.8) and (1.10) in terms of Green's tensor of the effective medium. An expression is 
obtained for G* = (G> in 171 

(Gij (r)> = - -$ JF$$jjexp(iql’)r) + 
n=o 

(2.4) 

for a statistical isotropic homogeneous medium. 
Formula (2.4) generalizes the expression for the dynamic Green's tensor Gije of a 

homogeneous isotropic medium. 
Therefore, (1.8), (1.10) and (2.4) enable us in principle, to find all the approximations 

in the series (1.4) and (1.9). However, the expressions are written in integral form, which 
makes their practical application difficult. 

In many problems one is limited to finding the zero-th approximation, i.e., the approxi- 
mation of the effective medium f81'. In this case <w> is an estimate of the exact solution 
for a given sample. The error in this estimate for a specific sample is determined by the 
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expression I ut - <u*> I. We can take ((u~')*>"~, which is the r.m.s deviation of the field 

component ui from <ut) as an estimate of the error suitable for a set of samples. 

3. We again assume that h(x), P@z) are random functions: then 

nil = u.i - <us> (3-Q 

are random errors of the approximation of the samples U, by using <ui>. 
The correlation tensor 

v,j (x, 51) = <ni' (E) uj' (X1)) (3.9 

determines the statistical relations between the errors u,‘ (x) (i = 1,2,3) at different 
points. Its diagonal elements, the variances, determine the r.m.s. errors Ui by using the 
zero-th approximation <&>. 

The tensor vi1 (G 21) can be represented in the form 

V*j (Xf -4 = Kij t5* %I - Ifj (I, 4 (3.3) 

Kf* (2, ~1) = <Ul (x) uj (&I>, Ii1 (IT II) = (% (X)><Uj (ZI;)> 

where Ktj (r, %) is the coherence function. For i = j, x = 9 the quantity Iii determines 
the intensity of the mean field <%), fc,~ is the mean intensity of the field u and Vii is 
the fluctuation intensity (errors). Transformation of the energy of the regular part of <u> 
into the fluctuation part U’ occurs during wave propagation in an inhomogeneous medium. In 
the case of the problem of the incidence of a plane wave on an inhomogeneous half-space, Kii 
remains constant, I,, decreases, and Vii increases. This indicates that the error of the 
zero-th approximation of <u> increases with distance because of scattering, consequently, 
the higher approximations n(n). must be taken into account. 

Writing the series (1.15) at two different points x',x*, multiplying them and taking 
the average, we obtain a Bethe-Salpeter type equation /6/ for the correlation tensor Vfd, z”), 
which has the following form in a ladder approximation: 

v (x’, 51) = 1 (x’, x”) + Jj (G (I’, x&<a (x”, sz> x (3.4) 

R (2'1, $1 v (%, x*) dJG% 

where R (.rZt 3%) is the correlation tensor of the material coefficients of the medium, and 
the bar denotes the complex conjugate. 

Eqs.Cl.6) or (1.7) for n = 0 or (1.18) for the zero-th approximation <u> and the 
equation for the errors (variances) vii (a) in (3.4) form a closed system of equations. 

4. We will examine the use of the method to find approximate solutions of the equations 
of the dynamics of a laminated medium described by a one-dimensional model 

(h (5) u,x),z + W'P (z) n = 0 (4.1) 

Using the expansions (1.3) and 11.5), we obtain equations for <a> and r&V) 

(A* <U>,T).2 + w2p* cu> = 0 (4.2) 

(n*u!:'L + oap*U(') = -9(K<u>,& + $$P' <*)I (4.3) 

It is interesting to examine the application of the method to media for which the 
elastic coefficients can be written explicitlyand contain coefficients that can be assumed 
to be random for the finding the zero-th approximation. Such random functions are called 
quasideterministic /lo/. 

We consider a two-component laminated medium 

up (x) = D, + 9 (-i)*‘N*X), D* = ‘i, (‘ps f n) 

Cp (2) =; h. (SIT P(Z); 'Pi = hi, Pi 

(4.41 

where &i,Pi are the elasticity and density coefficients of the i-th component, and r&(-N, z) 
is an entire function governing the number of Layer boundaries in the segment 
sessing the property 

l--N, xl pos- 

n (II. 51) = n (r,, %-af -I- = (% rs), z1 G "s Q 5s (4.5) 

To find the zero-th approximation <@> we assume that L.(x],p(x) are random functions. 
We also assume that ?E (-N, r) iS a Stationary Poisson random function possessing the property 
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(4.5) and the distribution 

The numerical characteristics of the random functions 'p (5) = h(x), p(z) have the form 

(cP> = D+, <cp’ @I) ‘P’ (d> = R, (r) = D_$ exp (-I r 1 /a) 
a = 1/(2a), r = Z, - z2 

(4.6) 

The correlation function (4.6) describes a medium with a completely disordered con- 
figuration /a/. 

Substituting <u> = a(q)exP (iqx) into (4.2) and considering p* = (p) we obtain a 
dispersion equation that we can write in the dimensionless form 

a” + cc2 (p” - 5”) - %“B (B - W%) = 0 (4.7) 
a = aq, 5 = ak, n = 'i, (nD), B = 1 - 1s 

The two roots aI. a,, located in the first quadrant of the complex plane 3! = ax + ia6 
have a physical meaning. The general solution of (4.2) has the form 

<u (x)> = aI (9) exP (W) + a2 (4) exP (iqg) (4.8) 

Curves of a& and a& (the solid lines) axI, ax, (the dashed lines) as a function 
of g are shown in the figure by the curves Z, 2 (Z', 2') for q = 10-s and 3,4(3', 4') for 
q =I, respectively, as are also curves of the vibration decrements of the appropriate 
branches a&E-r, a&g-' (the solid lines) and the velocities -r CICO and Cl%' (the dashed 
lines) as a function of s /curves 5, 6 (5', 6') for q = 1O-9 and 7, 8 (7', 8') for q=ll. The 
parameter s characterizes the relationship between the correlation radius a and the wavelength 
k-‘, while the parameter n characterizes the variance of the elastic coefficients of the 
medium. Substituting (4.8) into (4.3), we find an expression for the first approximation. 

To a first approximation (1.9) has the form 

u = <n> + &"'<u,> 

h%ma 9 Gj* &A I’ =A,---hl, m 1 m h(l) = h - ?b* (q ) 

5=? 

(4.9) 

p= exp(ik,--q,) I) 
i (‘II -&I exp(i(~ - a3 z~-l)texP(i(qj - qm)sA - II. 
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It follows from (4.9) and the figure that the zero-th approximation <U> damps out over 
the whole frequency range (for all wavelengths), and the velocity dispersion holds. The 
structure of the first approximation a(') is determined by terms with h' and h(r). To other 
terms analogous to the last in (4.9) and with p' =p~ -ppl, p(l)= p,--p* (q) are appended to take 
account of the difference in the densities. The first term for h' in (4.9) describes the 
wave field whose radiation sources are the layer boundaries, the second term in h' describes 
plane waves in a laminar me~iurn~ the third term in 3') governs the change in amplitude of 
the field (u> (the zero-th approximation) due to the difference in the characteristics of 
the effective medium from the layer parameters. 

Let us consider a medium in which 

(4.10) 

To find the zero-th approximation <u>, we assume that 5, h, are random independent 
quantities (kI> = <As> = 0, (A&,> = 0, <h,*) = (h,a) = D/2 /lo/. Then <A> = ho, (h' (2) h' (r + r)> = 
'l& co9 er . 

The dispersion equation has the form 

qa = k* 11 + V,iD, (4 (k + 0 - qj f 6 (k - 8 - q))I (4.11) 

It follows from (4.11f that the zero-th approximation for q# k j- %,k - 6 corresponds 
to a plane undamped wave. For q = kf 8,k- 9 there are no propagating waves. To a first 
approximation inclusive, we write the solution of (4.1) in the form 

u (x) = ue exp (ikx) -+ e@k%‘G* (k) exp (ik.z) + 

~u,k(k-o)(a,-~a,)G~(k-~8)exp(i(k-e)s) f 

+ u& (k + 0) (a, -I- ih,)G*(k + 0) exp(~(~ + 8jr) = 

(4.12) 

-p u(q- m0) exp [ - i (q - me) 51 
m=--l 

Substituting (4.12) into (4.11, we obtain the following dispersion equation as in /II!: 
(aQqa- pow2)2 - hwq* L 0, aw = aI + i$.+ U-1) = a, - Eaa (4.13) 

from which wJ = ri"~~-~ (a, + i wf. 
The boundaries of the frequency passband are 

0, * = 03 (1 + I a(l) 1 he-y, @_* = d (1 - 1 a(l) 1 a,-') 

The width of the frequency passband is Ao = w /h(r) Ih,-r. 
The expression for the wave number at the centre of the forbidden band has the form 

Therefore, the averaging method proposed enables all wave propagation effects in period- 
ically inhomogeneous media to be described. 

A generalization of the model considered is a medium whose parameters are represented in 
the form 

(4.14) 
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Then under the same assumptions regarding the probabilistic properties of a,,,, the sol- 
ution of (4.1) is represented, as above, in the form 

where n (Q - me) is found from the solution of the appropriate problem in the zero-th and 
first approximations. Its forbidden band of width (Aw)(m) z o 1 A(“‘) 1 A,” will be associated 
with each effective Fourier coefficient ?Jnl) in expansion (4.14). For m = 1 these bands 
are called higher-order forbidden bands Ill/. 

The expansion (4.14) can be used to solve the problem of the propagation of elastic waves 
in a periodically laminar two-component medium. 

In this case h(z) = h (z i 20, h (d = h, for -2 < i< I,, i, (s) = h, for I,< x<Z and can be 
expanded in a series (4.14) where h,,= (h) = I,c,-: hZcLI ci is the bulk concentration of the i-th 
component, and h1, = (Al - hl) (mn)-'sin m*cl, h,, = (hl - h,) (mn)"" [(--l)m - cos mncJ, Bm = mnl-'. 

To find the zero-th approximation <U) we again assume the coefficients h1,,,? 5, to be 
random and to possess the properties listed earlier, which requires the assumption of the 
randomness of x, - %, 11. In this case the solution of (4.1) will have the form (4.15). 

It follows from the above that the averaging method permits uniform solution of the wave 
propagation problem in media with a range of structure variation from completely disordered 
to periodically laminar. The effects of multiple scattering, velocity dispersion, and wave 
damping are taken into account here in the zero-th approximation. The first approximation 
makes the structure specific for the scattered field propagating in a medium with a given 
form of the elastic and density properties. 

The author is grateful to E.I. Shemyakin for suggesting the topic and discussing the 
results. 
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